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By Seymour Haber 

ABSTRACT. Let R be the class of all functions that are properly Riemann-integrable 

on (0, 1], and let IR be the class of all functions that are properly Riemann-integrable 

on [a, 1] for all a > 0 and for which 

lim f: f(x) dx 

exists and is finite. There are computational schemes that produce a convergent sequence 

of approximations to the integral of any function in R; the trapezoid rule is one. In 

this paper, it is shown that there is no computational scheme that uses only evaluations 

of the integrand, that is similarly effective for IR. 

In this paper, I will discuss the convergence of the approximations that are pro- 
duced by adaptive numerical quadrature methods. An adaptive quadrature method is 
one which does not use the same sequence of quadrature points (the points at which 
the integrand is evaluated) for all integrands; after the first integrand evaluation it 
chooses some or all of the succeeding points in a manner dependent on the integrand 
values found at the points already used. Such a method may be made "automatic" by 
incorporating in it a stopping procedure, a procedure for deciding when to stop the 
calculation and report a final value for the integral. In order to discuss convergence, I 
will deal, formally, with methods that are not automatic. This distinction is not really 
important; an automatic method can be thought of as part of a larger nonautomatic 
method, in which the automatic method's stopping criterion is varied so as to produce 
more and more accurate approximations to the integral. 

The purpose of adaptiveness is the efficient handling of integrands which are 
quite well-behaved in some part of the interval of integration and are ill-behaved in some 
other part. Thus, Rice has shown [1] that certain adaptive integration schemes can 
integrate many functions that have singularities of the x-' type as quickly as they, or 
the quadrature formulas that they are based on, integrate functions that are quite 
smooth. This is in contrast to what happens with a nonadaptive scheme such as the 
trapezoid rule. There the use of very closely spaced points in the neighborhood of the 
singularity entails the use of equally dense points in the rest of the integration interval, 
which is a waste of effort. As a result, the trapezoid rule with N points approximates 

X- 1/2 dx with an error of the order of magnitude of N- 1/2. The adaptive schemes 
discussed by Rice approximate this integral to within O(N-2) when using the trapezoid 
formula as their basic quadrature formula. 
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A natural question is: How general are such schemes? Can one find adaptive quad- 
rature procedures that will handle the full range of integrable singularities? We cannot 
consider the generality of Lebesgue-integrable functions, where the integral is not deter- 
mined by the values of the function on any countable set of points; but we may con- 
sider improper Riemann integrals. It is well known that many nonadaptive quadrature 
schemes-the trapezoid rule, Simpson's rule, and the Gauss-Legendre sequence-have the 
property of converging to the true integral for all properly Riemann-integrable functions. 
Can any adaptive procedure do the same for all improperly-integrable functions? To 
make clearer the set of functions considered, let us define IR to be the set of all real 
functions f that are defined on (0, 1], properly Riemann-integrable on [a, 1] for every 
a in (0, 1], and for which 

ffx)dx = lim fix) dx 

exists and is finite. It is known [2] that no nonadaptive linear quadrature scheme con- 
verges for all functions in IR. I shall show that no adaptive scheme does, either. 

Let me first describe more carefully what an adaptive procedure does: It starts 
by evaluating the integrand f at a particular point x1. Thereafter, whenever it has 
evaluated the integrand, say, the nth time, at some point, xw, it goes through a finitely 
long calculation involving the numbers xl, x2... , xn and f(x1), 1(x2), . f . ,f(xn) 
and, as a result, specifies two things: first, whether or not to report, at this stage of the 
overall procedure, a number that is an approximation to the integral (and specifies the 
number itself, if the decision is positive); second, it specifies the next point, xn + 1I at 
which the integrand is to be evaluated. Of course, for some n the decision procedure 
may be almost vacuous; it may have been decided, after the n - 1 st evaluation, to evalu- 
ate the function at a certain set of, say, 10 points before doing any other arithmetic 

or decision-making, so that after the nth evaluation, the procedure automatically con- 
tinues to the n + 1st. Let me emphasize that we are considering only procedures in 
which the decisions made-whether to report, what to report, the value of xn + 1-depend 
only on the numbers xl, . . . , xn and f(x ), . . . , f(xn). That is, if g were another 
integrand with f(xi) = g(xi), i = 1, 2, . . . , n, exactly the same decisions would be 
made for g, at that stage, as for f. (One may imagine the possibility of procedures for 
which this would not be the case, namely ones in which the decisions were based, per- 
haps, on some kind of analysis of the algorithm for calculating f rather than only on 
the values found.) We need make no further restrictions on the nature of the decision 
method, such as recursiveness. 

I shall consider only infinite adaptive procedures-those which must report an 
infinite sequence of approximations to the integral. Denoting the successive approxima- 
tions reported, for the integrand f, by A1(I), A2(, . . ., we say that the procedure 
"converges for f " if 

lim A(f = f(x)dx. 

THEOREM. There is no adaptive procedure which converges for all functions in 
IR. 
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Proof. Suppose the contrary. Let f1 be twice the characteristic function of 
[?, 1 ] . Since f1 E IR and 1 ff = 1, there is an integer nI such that An$1)> 1/2. 
Let S1 be the set of all those positive values of x at which f1 was evaluated by the 
procedure before it reported An (f, ), and let xl be the least element of S1. Define the 
function g on [x 1, 1] by 

g(x) = f1(x) xE SI 

Set g(O) = 0. We shall later define g on (0, xl); but however we define it there, it is 
the case that An 1(g)> 1/2. 

Choose numbers b2 and a2 such that 0 < a2 < b2 < xI. Define f2 by: 

g(x), xE [XI, 1], 
f2 (X) = 1 /(b2 - a2), x E [a2, b2], 

0, x E [O, X1) - [a2, b2] 

Thus, f2 E IR and fo f2 = 1. There is, therefore, an integer n2 > n1 such that 

An2(f2) > 1/2. Let S2 be the set of all those positive values of x at which the proce- 
dure evaluated f2 before reporting A 2(f2), and let x2 be a number less than or equal to 
the least element of S2 and less than or equal to x /2. Extend the definition of g to 

[x2, x 1 ) by defining 

( f2(X), xES2n[x21x1), 
0(x)x 0 X[X2P XI) -S2- 

Then g and f2 are equal on S2' so that An2 g)> 1/2. Continuing so, we extend the 

definition of g to [xl, 1] U [x2, xI) U [X3, x2) U . . .U {O} = [0, 1]. At the same 
time we find a sequence of integers nI < n2 < n3 < . . .such that 

Anig) > 1/2, i = 1, 2, . . 

The function g is in IR, and its integral is zero-so the procedure does not converge for 
g, and the Theorem follows. 

The g constructed is discontinuous at infinitely many points, but this is not 
essential. One could modify the construction along the following lines: Let 
t1 > t2 > ... > tm , be the elements of S1 and set to = 1. For i > 1, let Ii be an interval 
of length less than min {1 /(5 - 2'), t_ - t ti - ti+ I t,}, centered on ti. On each I,, let g 

be zero at the endpoints and equal to f1 at t,; and let g be linear on the right half of I, and 
on the left half of I,. Let x = x 1 - 2m11 Then g is defined on [x1, 1], and it remains 
the case that A g) > 1/2. This g is continuous, and f 1g < 1/5. Similarly modifying 
the remaining steps of the construction, we can obtain a g E IR which is continuous on 
(0, 1] and is such that 

AniO > 1/2, i = 1, 2, ... 

while flg < 2/5. 
By "rounding the corners" of the g thus constructed, we could make it as smooth 

as desired (even C) on (0, 1]. 
The theorem is perhaps a bit surprising, because of the following considerations: 
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The integral of a function in IR is determined, in principle, by the values of the func- 
tion on any dense set of points, for example, the rationals. An infinitive adaptive 
procedure can make use of the values of the function at all the rationals. It would 
seem that the weakest sense that can be given to the phrase "calculate the integral" is 
the sense used above, in which one asks for a convergent sequence of approximations 
but does not ask for bounds on the errors of these approximations. We may for the 
moment call this "A-calculability". Another definition of calculability asks that, for 
each positive integer n, there be some stage in the calculation at which the integral is 
definitely known to n significant figures. Let us call this B-calculability; it is equivalen 
to asking for a sequence A1, A2, of approximations, with associated rigorous error 
bounds B1, B2, . . . , the latter converging to zero. (There are of course other "cal- 
culabilities" familiar to numerical analysts. One may ask that the B's be sharp, that 

Bn/lAn - lim An I be bounded or even approach 1 as n approaches infinity or that 

IAn - lim An 1, or Bn, go to zero rapidly as some measure of the calculation effort 
goes to infinity.) Now for the class of functions that are properly Riemann-integrable 
on [0, 1 ], the integral is A-calculable-the trapezoid rule does it-but it is not B-calcul- 
able. That is easy to see directly since even in principle the integral is not determined 
to any accuracy by the values of the integrand on a finite set of points. Furthermore, 
it is easy to see that if the proper Riemann-integral were B-calculable, then the im- 
proper one that we have dealt with would be A-calculable. However, the improper 
integral is not A-calculable. The information that determines the integral when it is 
known all at once does not permit the determination of the integral when it is made 
known item by item. 
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